4.4 Article

Bone mineralization proceeds through intracellular calcium phosphate loaded vesicles: A cryo-electron microscopy study

期刊

JOURNAL OF STRUCTURAL BIOLOGY
卷 174, 期 3, 页码 527-535

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jsb.2011.03.014

关键词

Biomineralization; Mouse model; Osteoblast; Calvaria; Carbonated hydroxyapatite; Transient precursor

资金

  1. Israeli Council for Higher Education
  2. Kimmelman Center for Biomolecular Structure and Assembly, Weizmann Institute

向作者/读者索取更多资源

Bone is the most widespread mineralized tissue in vertebrates and its formation is orchestrated by specialized cells - the osteoblasts. Crystalline carbonated hydroxyapatite, an inorganic calcium phosphate mineral, constitutes a substantial fraction of mature bone tissue. Yet key aspects of the mineral formation mechanism, transport pathways and deposition in the extracellular matrix remain unidentified. Using cryo-electron microscopy on native frozen-hydrated tissues we show that during mineralization of developing mouse calvaria and long bones, bone-lining cells concentrate membrane-bound mineral granules within intracellular vesicles. Elemental analysis and electron diffraction show that the intracellular mineral granules consist of disordered calcium phosphate, a highly metastable phase and a potential precursor of carbonated hydroxyapatite. The intracellular mineral contains considerably less calcium than expected for synthetic amorphous calcium phosphate, suggesting the presence of a cellular mechanism by which phosphate entities are first formed and thereafter gradually sequester calcium within the vesicles. We thus demonstrate that in vivo osteoblasts actively produce disordered mineral packets within intracellular vesicles for mineralization of the extracellular developing bone tissue. The use of a highly disordered precursor mineral phase that later crystallizes within an extracellular matrix is a strategy employed in the formation of fish fin bones and by various invertebrate phyla. This therefore appears to be a widespread strategy used by many animal phyla, including vertebrates. (C) 2011 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据