4.4 Article

Site-specific methionine oxidation in calmodulin affects structural integrity and interaction with Ca2+/calmodulin dependent protein kinase II

期刊

JOURNAL OF STRUCTURAL BIOLOGY
卷 174, 期 1, 页码 187-195

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jsb.2010.12.002

关键词

Mass spectrometry; LC/MS/MS; Calmodulin; Methionine oxidation; Substrate binding; Protein conformation

资金

  1. Netherlands Proteomics Centre, embedded in the Netherlands Genomics Initiative
  2. Fondation Leducq (Transatlantic CaMKII Alliance)
  3. Genmab (Utrecht, The Netherlands)

向作者/读者索取更多资源

Methionine oxidation in the ubiquitous calcium signaling protein calmodulin (CaM) is known to disrupt downstream signaling and target CaM for proteasomal degradation. The susceptibility of CaM to oxidation in the different conformations that are sampled during calcium signaling is currently not well defined. Using an integrative mass spectrometry (MS) approach, applying both native MS and LC/MS/MS, we unravel molecular details of CaM methionine oxidation in the context of its interaction with the Ca2+/CaM-dependent protein kinase II (CaMKII). Sensitivity to methionine oxidation in CaM was found to vary according to the conformational state. Three methionine residues (Met71, 72, 145) show increased reactivity in calcium-saturated CaM (holo-CaM) compared to calcium-free CaM (apo-CaM), which has important consequences for oxidation-targeted proteasomal degradation. In addition, all four methionines in the C-terminal lobe (Met109, 124, 144 and 145) are found to be protected from oxidation in a peptide-based model of the CaMKII-bound conformation (cbp-CaM). We furthermore demonstrate that the oxidation of Met144 and 145 inhibits the interaction of CaM with CaMKII. cbp-CaM, in contrast to apo- and holo-CaM, maintains its ability to bind CaMKII under simulated conditions of oxidative stress and is also protected from oxidation-induced unfolding. Thus, we show that the susceptibility towards oxidation of specific residues in CaM is tightly linked to its signaling state and conformation, which has direct implications for calcium/CaM-CaMKII related signaling. (C) 2010 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据