4.4 Article

Biophysical characterization of recombinant proteins: A key to higher structural genomics success

期刊

JOURNAL OF STRUCTURAL BIOLOGY
卷 172, 期 1, 页码 107-119

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jsb.2010.05.005

关键词

Thermodenaturation; Protein stabilization; Ligand binding; Peptide array; Chemical probes

资金

  1. Canadian Institutes for Health Research [1097737]
  2. Canadian Foundation for Innovation
  3. Genome Canada through the Ontario Genomics Institute
  4. GlaxoSmithKline
  5. Karolinska Institutet
  6. Knut and Alice Wallenberg Foundation
  7. Ontario Innovation Trust
  8. Ontario Ministry for Research and Innovation
  9. Merck Co., Inc.
  10. Novartis Research Foundation
  11. Swedish Agency for Innovation Systems
  12. Swedish Foundation for Strategic Research
  13. Wellcome Trust

向作者/读者索取更多资源

Hundreds of genomes have been successfully sequenced to date, and the data are publicly available. At the same time, the advances in large-scale expression and purification of recombinant proteins have paved the way for structural genomics efforts. Frequently, however, little is known about newly expressed proteins calling for large-scale protein characterization to better understand their biochemical roles and to enable structure function relationship studies. In the Structural Genomics Consortium (SGC), we have established a platform to characterize large numbers of purified proteins. This includes screening for ligands, enzyme assays, peptide arrays and peptide displacement in a 384-well format. In this review, we describe this platform in more detail and report on how our approach significantly increases the success rate for structure determination. Coupled with high-resolution X-ray crystallography and structure-guided methods, this platform can also be used toward the development of chemical probes through screening families of proteins against a variety of chemical series and focused chemical libraries. (C) 2010 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据