4.7 Article

Is salt stress tolerance in Casuarina glauca Sieb. ex Spreng. associated with its nitrogen-fixing root-nodule symbiosis? An analysis at the photosynthetic level

期刊

PLANT PHYSIOLOGY AND BIOCHEMISTRY
卷 96, 期 -, 页码 97-109

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.plaphy.2015.07.021

关键词

Casuarina glauca; Frankia; Actinorhizal nodules; Salt stress; Photosynthesis

资金

  1. Fundacao para a Ciencia e Tecnologia [PTDC/AGR-FOR/4218/2012, SFRH/BPD/78619/2011]
  2. POPH program - European Social Fund
  3. Fundação para a Ciência e a Tecnologia [SFRH/BPD/78619/2011, PTDC/AGR-FOR/4218/2012] Funding Source: FCT

向作者/读者索取更多资源

Casuarina glauca is an actinorhizal tree which establishes root-nodule symbiosis with N-2-fixing Frankia bacteria. This plant is commonly found in saline zones and is widely used to remediate marginal soils and prevent desertification. The nature of its ability to survive in extreme environments and the extent of Frankia contribution to stress tolerance remain unknown. Thus, we evaluated the ability of C. glauca to cope with salt stress and the influence of the symbiosis on this trait. To this end, we analysed the impact of salt on plant growth, mineral contents, water relations, photosynthetic-related parameters and nonstructural sugars in nodulated vs. non-nodulated plants. Although the effects on photosynthesis and stomatal conductance started to become measurable in the presence of 200 mM NaCl, photochemical (e.g., photosynthetic electron flow) and biochemical (e.g., activity of photosynthetic enzymes) parameters were only strongly impaired when NaCl levels reached 600 mM. These results indicate the maintenance of high tissue hydration under salt stress, probably associated with enhanced osmotic potential. Furthermore, the maintenance of photosynthetic assimilation potential (A(max)), together with the increase in the quantum yield of down-regulated energy dissipation of PSII (Y-NPQ), suggested a down-regulation of photosynthesis instead of photo-damaging effects. A comparison of the impact of increasing NaCl levels on the activities of photosynthetic (RubisCO and ribulose-5 phosphate kinase) and respiratory (pyruvate kinase and NADH-dependent malate dehydrogenase) enzymes vs. photosynthetic electron flow and fluorescence parameters, revealed that biochemical impairments are more limiting than photochemical damage. Altogether, these results indicate that, under controlled conditions, C glauca tolerates high NaCl levels and that this capacity is linked to photosynthetic adjustments. (C) 2015 Elsevier Masson SAS. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据