4.2 Article

Revisiting single-point incremental forming and formability/failure diagrams by means of finite elements and experimentation

期刊

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1243/03093247JSA522

关键词

single-point incremental forming; membrane analysis; forming limits; finite element method; experimentation

向作者/读者索取更多资源

In a previously published work, the current authors presented an analytical framework, built upon the combined utilization of membrane analysis and ductile damage mechanics, that is capable of modelling the fundamentals of single-point incremental forming (SPIF) of metallic sheets. The analytical framework accounts for the influence of major process parameters and their mutual interaction to be studied both qualitatively and quantitatively. It enables the conclusion to be drawn that the probable mode of material failure in SPIF is consistent with stretching, rather than shearing being the governing mode of deformation. The study of the morphology of the cracks combined with the experimentally observed suppression of neck formation enabled the authors to conclude that traditional forming limit curves are inapplicable for describing failure. Instead, fracture forming limit curves should be employed to evaluate the overall formability of the process. The aim of this paper is twofold: (a) to compare the mechanics of deformation of SPIF, namely the distribution of stresses and strains derived from the analytical framework with numerical estimates provided by finite element modelling; and (b) to compare the forming limits determined by the analytical framework with experimental values. It is shown that agreement between analytical, finite element, and experimental results is good, implying that the previously proposed analytical framework can be utilized to explain the mechanics of deformation and the forming limits of SPIF.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据