4.8 Article

Secondary siRNAs from Medicago NB-LRRs modulated via miRNA-target interactions and their abundances

期刊

PLANT JOURNAL
卷 83, 期 3, 页码 451-465

出版社

WILEY
DOI: 10.1111/tpj.12900

关键词

microRNA; phased siRNA; phasiRNA; Medicago; NB-LRR

资金

  1. NSF IOS award [1257869]
  2. Division Of Integrative Organismal Systems [1650843] Funding Source: National Science Foundation

向作者/读者索取更多资源

Small RNAs are a class of non-coding RNAs that are of great importance in gene expression regulatory networks. Different families of small RNAs are generated via distinct biogenesis pathways. One such family specific to plants is that of phased, secondary siRNAs (phasiRNAs); these require RDR6, DCL4, and (typically) a microRNA (miRNA) trigger for their biogenesis. Protein-encoding genes are an important source of phasiRNAs. The model legume Medicago truncatula generates phasiRNAs from many PHAS loci, and we aimed to investigate their biogenesis and mechanism by which miRNAs trigger these molecules. We modulated miRNA abundances in transgenic tissues showing that the abundance of phasiRNAs correlates with the levels of both miRNA triggers and the target, precursor transcripts. We identified sets of phasiRNAs or PHAS loci that predominantly and substantially increase in response to miRNA overexpression. In the process of validating targets from miRNA overexpression tissues, we found that in the miRNA-mRNA target pairing, the 30 terminal nucleotide (the 22nd position), but not the 10th position, is important for phasiRNA production. Mutating the single 30 terminal nucleotide dramatically diminishes phasiRNA production. Ectopic expression of Medicago NB-LRR-targeting miRNAs in Arabidopsis showed that only a few NB-LRRs are capable of phasiRNA production; our data indicate that this might be due to target inaccessibility determined by sequences flanking target sites. Our results suggest that target accessibility is an important component in miRNA-target interactions that could be utilized in target prediction, and the evolution of mRNA sequences flanking miRNA-target sites may be impacted.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据