4.8 Article

Transcriptome atlas of the Arabidopsis funiculus - a study of maternal seed subregions

期刊

PLANT JOURNAL
卷 82, 期 1, 页码 41-53

出版社

WILEY-BLACKWELL
DOI: 10.1111/tpj.12790

关键词

Arabidopsis thaliana; chalazal seed coat; funiculus; laser microdissection; seed; seed coat; transcriptome

资金

  1. NSERC
  2. NSF Plant Genome Program
  3. Direct For Biological Sciences
  4. Division Of Integrative Organismal Systems [1027494] Funding Source: National Science Foundation

向作者/读者索取更多资源

The funiculus anchors the structurally complex seed to the maternal plant, and is the only direct route of transport for nutrients and maternal signals to the seed. While our understanding of seed development is becoming clearer, current understanding of the genetics and cellular mechanisms that contribute to funiculus development is limited. Using laser microdissection combined with global RNA-profiling experiments we compared the genetic profiles of all maternal and zygotic regions and subregions during seed development. We found that the funiculus is a dynamic region of the seed that is enriched for mRNAs associated with hormone metabolism, molecular transport, and metabolic activities corresponding to biological processes that have yet to be described in this maternal seed structure. We complemented our genetic data with a complete histological analysis of the funiculus from the earliest stages of development through to seed maturation at the light and electron microscopy levels. The anatomy revealed signs of photosynthesis, the endomembrane system, cellular respiration, and transport within the funiculus, all of which supported data from the transcriptional analysis. Finally, we studied the transcriptional programming of the funiculus compared to other seed subregions throughout seed development. Using newly designed in silico algorithms, we identified a number of transcriptional networks hypothesized to be responsible for biological processes like auxin response and glucosinolate biosynthesis found specifically within the funiculus. Taken together, patterns of gene activity and histological observations reveal putative functions of the understudied funiculus region and identify predictive transcriptional circuits underlying these biological processes in space and time.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据