4.6 Article

Noise driven translocation of short polymers in crowded solutions

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1742-5468/2009/01/P01011

关键词

dynamics (theory); mechanical properties (DNA, RNA, membranes, bio-polymers) (theory)

向作者/读者索取更多资源

In this work we study the noise induced effects on the dynamics of short polymers crossing a potential barrier, in the presence of a metastable state. An improved version of the Rouse model for a flexible polymer has been adopted to mimic the molecular dynamics by both taking into account the interactions between adjacent monomers and introducing a Lennard-Jones potential between all beads. A bending recoil torque has also been included in our model. The polymer dynamics is simulated in a two-dimensional domain by numerically solving the Langevin equations of motion with a Gaussian uncorrelated noise. We. find a non-monotonic behavior of the mean first-passage time and the most probable translocation time of the polymer center of inertia as a function of the polymer length at low noise intensity. We show how thermal fluctuations influence the motion of short polymers, by inducing two different regimes of translocation in the molecule transport dynamics. In this context, the role played by the length of the molecule in the translocation time is investigated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据