4.6 Article

Evolution in random fitness landscapes: the infinite sites model

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1742-5468/2008/04/P04014

关键词

models for evolution (theory); mutational and evolutionary processes (theory); slow relaxation and glassy dynamics

向作者/读者索取更多资源

We consider the evolution of an asexually reproducing population in an uncorrelated random fitness landscape in the limit of infinite genome size, which implies that each mutation generates a new fitness value drawn from a probability distribution g(w). This is the finite population version of Kingman's house of cards model (Kingman 1978 J. Appl. Probab. 15 1). In contrast to Kingman's work, the focus here is on unbounded distributions g( w) which lead to an indefinite growth of the population fitness. The model is solved analytically in the limit of infinite population size N -> infinity and simulated numerically for infinite N. When the genome-wide mutation probability U is small, the long-time behavior of the model reduces to a point process of fixation events, which is referred to as a diluted record process (DRP). The DRP is similar to the standard record process except that a new record candidate (a number that exceeds all previous entries in the sequence) is accepted only with a certain probability that depends on the values of the current record and the candidate. We develop a systematic analytic approximation scheme for the DRP. At finite U the fitness frequency distribution of the population decomposes into a stationary part due to mutations and a traveling wave component due to selection, which is shown to imply a reduction of the mean fitness by a factor of 1 - U compared to the U -> 0 limit.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据