4.8 Article

Light acclimation involves dynamic re-organization of the pigment-protein megacomplexes in non-appressed thylakoid domains

期刊

PLANT JOURNAL
卷 84, 期 2, 页码 360-373

出版社

WILEY
DOI: 10.1111/tpj.13004

关键词

Arabidopsis thaliana; light acclimation; native gel electrophoresis; non-appressed thylakoid; phosphorylation; protein complex

资金

  1. Academy of Finland [271832, 273870]
  2. Swedish Research Council
  3. Swedish Energy Agency
  4. Knut and Alice Wallenberg Foundation
  5. Initial Training Network (ITN) CALIPSO [GA ITN 2013-607-607]

向作者/读者索取更多资源

Thylakoid energy metabolism is crucial for plant growth, development and acclimation. Non-appressed thylakoids harbor several high molecular mass pigment-protein megacomplexes that have flexible compositions depending upon the environmental cues. This composition is important for dynamic energy balancing in photosystems (PS) I and II. We analysed the megacomplexes of Arabidopsis wild type (WT) plants and of several thylakoid regulatory mutants. The stn7 mutant, which is defective in phosphorylation of the light-harvesting complex (LHC) II, possessed a megacomplex composition that was strikingly different from that of the WT. Of the nine megacomplexes in total for the non-appressed thylakoids, the largest megacomplex in particular was less abundant in the stn7 mutant under standard growth conditions. This megacomplex contains both PSI and PSII and was recently shown to allow energy spillover between PSII and PSI (Nat. Commun., 6, 2015, 6675). The dynamics of the megacomplex composition was addressed by exposing plants to different light conditions prior to thylakoid isolation. The megacomplex pattern in the WT was highly dynamic. Under darkness or far red light it showed low levels of LHCII phosphorylation and resembled the stn7 pattern; under low light, which triggers LHCII phosphorylation, it resembled that of the tap38/pph1 phosphatase mutant. In contrast, solubilization of the entire thylakoid network with dodecyl maltoside, which efficiently solubilizes pigment-protein complexes from all thylakoid compartments, revealed that the pigment-protein composition remained stable despite the changing light conditions or mutations that affected LHCII (de)phosphorylation. We conclude that the composition of pigment-protein megacomplexes specifically in non-appressed thylakoids undergoes redox-dependent changes, thus facilitating maintenance of the excitation balance between the two photosystems upon changes in light conditions. Significance Statement Thylakoid energy metabolism is crucial for plant growth, development and acclimation. Here we compare the pigment-protein megacomplexes in non-appressed thylakoids of wild type and several thylakoid regulatory mutants, and show that composition megacomplex composition is dynamically regulated according to light conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据