4.8 Article

Small-molecule auxin inhibitors that target YUCCA are powerful tools for studying auxin function

期刊

PLANT JOURNAL
卷 84, 期 4, 页码 827-837

出版社

WILEY
DOI: 10.1111/tpj.13032

关键词

auxin biosynthesis inhibitor; chemical biology; YUCCA; Arabidopsis thaliana; borate; Brachypodium distachyon; technical advance

资金

  1. Program for Promotion of Basic and Applied Researchers for Innovations in Bio-oriented Industry (BRAIN)
  2. JSPS KAKENHI [26506016, 26450046]
  3. Scientific Technique Research Promotion Program for Agriculture, Forestry, Fisheries and Food Industry
  4. Grants-in-Aid for Scientific Research [25440033, 26450046, 25514004, 26450069, 26506015, 26506016] Funding Source: KAKEN

向作者/读者索取更多资源

Auxin is essential for plant growth and development, this makes it difficult to study the biological function of auxin using auxin-deficient mutants. Chemical genetics have the potential to overcome this difficulty by temporally reducing the auxin function using inhibitors. Recently, the indole-3-pyruvate (IPyA) pathway was suggested to be a major biosynthesis pathway in Arabidopsis thaliana L. for indole-3-acetic acid (IAA), the most common member of the auxin family. In this pathway, YUCCA, a flavin-containing monooxygenase (YUC), catalyzes the last step of conversion from IPyA to IAA. In this study, we screened effective inhibitors, 4-biphenylboronic acid (BBo) and 4-phenoxyphenylboronic acid (PPBo), which target YUC. These compounds inhibited the activity of recombinant YUC in vitro, reduced endogenous IAA content, and inhibited primary root elongation and lateral root formation in wild-type Arabidopsis seedlings. Co-treatment with IAA reduced the inhibitory effects. Kinetic studies of BBo and PPBo showed that they are competitive inhibitors of the substrate IPyA. Inhibition constants (Ki) of BBo and PPBo were 67 and 56 nM, respectively. In addition, PPBo did not interfere with the auxin response of auxin-marker genes when it was co-treated with IAA, suggesting that PPBo is not an inhibitor of auxin sensing or signaling. We propose that these compounds are a class of auxin biosynthesis inhibitors that target YUC. These small molecules are powerful tools for the chemical genetic analysis of auxin function.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据