4.3 Article Proceedings Paper

Exploiting Sparsity in Direct Collocation Pseudospectral Methods for Solving Optimal Control Problems

期刊

JOURNAL OF SPACECRAFT AND ROCKETS
卷 49, 期 2, 页码 364-377

出版社

AMER INST AERONAUTICS ASTRONAUTICS
DOI: 10.2514/1.A32071

关键词

-

向作者/读者索取更多资源

In a direct collocation pseudospectral method, a continuous-time optimal control problem is transcribed to a finite-dimensional nonlinear programming problem. Solving this nonlinear programming problem as efficiently as possible requires that sparsity at both the first- and second-derivative levels be exploited. In this paper, a computationally efficient method is developed for computing the first and second derivatives of the nonlinear programming problem functions arising from a pseudospectral discretization of a continuous-time optimal control problem. Specifically, in this paper, expressions are derived for the objective function gradient, constraint Jacobian, and Lagrangian Hessian arising from the previously developed Radau pseudospectral method. It is shown that the computation of these derivative functions can be reduced to computing the first and second derivatives of the functions in the continuous-time optimal control problem. As a result, the method derived in this paper reduces significantly the amount of computation required to obtain the first and second derivatives required by a nonlinear programming problem solver. The approach derived in this paper is demonstrated on an example where it is found that significant computational benefits are obtained when compared against direct differentiation of the nonlinear programming problem functions. The approach developed in this paper improves the computational efficiency of solving nonlinear programming problems arising from pseudospectral discretizations of continuous-time optimal control problems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据