4.7 Article

Three dimensional dynamics of pretwisted beams: A spectral-Tchebychev solution

期刊

JOURNAL OF SOUND AND VIBRATION
卷 333, 期 10, 页码 2823-2839

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jsv.2014.01.010

关键词

-

资金

  1. National Science Foundation Award [CMMI-0928393]
  2. U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]

向作者/读者索取更多资源

This paper presents the application of the spectral-Tchebychev (ST) technique for solution of three-dimensional dynamics of unconstrained pretwisted beams with general cross-section (including both straight and curved cross-sections). In general, the dynamic response of pretwisted beams presents three-dimensional (3D) motions, including coupled bending-bending-torsional-axial motions. As such, accurately solving pretwisted beam dynamics requires a 3D solution approach. In this work, the integral boundary value problem based on the 3D linear elasticity equations is solved numerically using the 3D-ST approach. To simplify evaluation of the volume integrals, the boundaries are simplified by applying two coordinate transformations to render the pretwisted beam with curved cross-section into an equivalent straight beam with rectangular cross-section. Three sample pretwisted beam problems with rectangular, curved, and airfoil cross-sections at different twist rates are solved using the presented approach. In each case, the convergence of the solution is analyzed, and non-dimensional natural frequencies and mode shapes are compared to those from a finite-element (FE) solution. Furthermore, cross-sectional stress and displacements are obtained from the 3D-ST solution. Lastly, the non-dimensional natural frequencies from the 3D-ST and a 1D/2D solutions are compared. It is concluded that the 3D-ST solution can capture the three-dimensional dynamic behavior of pretwisted beam as accurately as an FE solution, but for a fraction of the computational cost. Furthermore, it is shown that 1D/2D solution can lead to significant errors at high twist rates, and thus, the 3D-ST solution should be preferred. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据