4.7 Article

General shell model for a rotating pretwisted blade

期刊

JOURNAL OF SOUND AND VIBRATION
卷 332, 期 22, 页码 5804-5820

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jsv.2013.06.025

关键词

-

资金

  1. Swedish Energy Agency
  2. Siemens Industrial Turbomachinery AB
  3. Volvo Aero Corporation
  4. Royal Institute of Technology through the Swedish research program TURBOPOWER

向作者/读者索取更多资源

A novel dynamic model for a pretwisted rotating compressor blade mounted at an arbitrary stagger angle using general shell theory and including the rotational velocity is developed to study the eigenfrequencies and damping properties of the pretwisted rotating blade. The strain-displacement relation and constitutive model based on the general (thick) shell theory are applied to bring out the strain energy of the rotating blade. Using Hamilton's principle, the variational form of the total energy is derived in order to obtain the corresponding weak form for the numerical simulation. The model is validated by comparing to the literature results and Ansys results, showing good agreement. Parametric analyses are carried out to study the influence of the rotation velocity, the stagger angle and the radius of the disk on the eigenfrequencies of the pretwisted blade. Proportional damping is included into the proposed model to investigate the influence of rotational velocity on the damping characteristics of the pretwisted rotating blade system. It is shown that, due to inertial and Coriolis effects, damping decreases as the rotation velocity increases for the lower part of the velocity range considered and either decreases or increases depending on the mode order for higher velocities. Furthermore, frequency loci veering as a result of the rotation velocity is observed. The proposed model is an efficient and accurate tool for predicting the dynamic behavior of compressor blades of arbitrary thickness, stagger angle and pretwist, potentially during the early designing stage of turbomachinery. (c) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据