4.6 Article

Switching times of nanoscale FePt: Finite size effects on the linear reversal mechanism

期刊

APPLIED PHYSICS LETTERS
卷 106, 期 16, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4919051

关键词

-

资金

  1. Advanced Storage Technology Consortium

向作者/读者索取更多资源

The linear reversal mechanism in FePt grains ranging from 2.316 nm to 5.404 nm has been simulated using atomistic spin dynamics, parametrized from ab-initio calculations. The Curie temperature and the critical temperature (T*), at which the linear reversal mechanism occurs, are observed to decrease with system size whilst the temperature window T* < T < T-C increases. The reversal paths close to the Curie temperature have been calculated, showing that for decreasing system size the reversal path becomes more elliptic at lower temperatures, consistent with the decrease in the Curie temperature arising from finite size effects. Calculations of the minimum pulse duration show faster switching in small grains and are qualitatively described by the Landau-Lifshitz-Bloch equation with finite size atomistic parameterization, which suggests that multiscale modeling of FePt down to a grain size of approximate to 3.5 nm is possible. (C) 2015 AIP Publishing LLC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据