4.7 Article

Enhanced vibration energy harvesting using dual-mass systems

期刊

JOURNAL OF SOUND AND VIBRATION
卷 330, 期 21, 页码 5199-5209

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jsv.2011.05.019

关键词

-

资金

  1. Div Of Civil, Mechanical, & Manufact Inn
  2. Directorate For Engineering [1031038] Funding Source: National Science Foundation

向作者/读者索取更多资源

A type of dual-mass vibration energy harvester, where two masses are connected in series with the energy transducer and spring, is proposed and analyzed in this paper. The dual-mass vibration energy harvester is proved to be able to harvest more energy than the traditional single degree-of-freedom (dof) one when subjected to harmonic force or base displacement excitations. The optimal parameters for maximizing the power output in both the traditional and the new configurations are discussed in analytical form while taking the parasitic mechanical damping of the system into account. Consistent of the previous literature, we find that the optimal condition for maximum power output of the single dof vibration energy harvester is when the excitation frequency equals to the natural frequency of the mechanical system and the electrical damping due to the energy harvesting circuit is the same as the mechanical damping. However, the optimal conditions are quite different for the dual-mass vibration energy harvester. It is found that two local optimums exist, where the optimal excitation frequency and electrical damping are analytically obtained. The local maximum power of the dual-mass vibration energy harvester is larger than the global maximum power of single dof one. Moreover, at certain frequency range between the two natural frequencies of the dual-mass system, the harvesting power always increases with the electrical damping ratio. This suggests that we can obtain higher energy harvesting rate using dual-mass harvester. The sensitivity of the power to parameters, such as mass ratio and tuning ratio, is also investigated. (C) 2011 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据