4.7 Article

Sound transmission through a double panel structure periodically coupled with vibration insulators

期刊

JOURNAL OF SOUND AND VIBRATION
卷 329, 期 15, 页码 3082-3100

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jsv.2010.02.013

关键词

-

向作者/读者索取更多资源

In this paper, sound transmission through an aircraft sidewall representative double panel structure is investigated theoretically and parametric and validation studies are conducted. The studied configuration is composed of a trim panel (receiver side panel) attached to a ribbed skin panel (source side panel) with periodically spaced resilient mounts. The structure is considered infinite in order to use space harmonic expansion. The partition is also assumed planar for simplicity. The model allows for a 3D incident field and the panels can be metallic and/or composite. A four-pole formulation is employed for modeling of the mounts and the absorption provided by the fiberglass that fills the cavity between the leaves is addressed with an equivalent fluid model. The investigation of mount stiffness, damping and spacing show that properly designed mounts can increase the TL significantly (up to 20 dB of difference between rigid and resilient mounts). However, they can create undesirable resonances resulting from their interaction with the panels. The influence of cavity absorption is also studied and results illustrate the fact that it is not worth investing in a highly absorbent fiber if the structure-borne transmission path is not adequately insulated, and likewise that it is not worth investing in highly resilient mounts without sufficient cavity absorption. Moreover, the investigation of panel damping confirms that when structure-borne transmission is present, raising skin damping can increase the TL even below coincidence, but that on average, greater improvements are achieved by raising trim damping. Finally, comparison between the periodic model and finite element simulations for structure-borne transmission shows that the average level of transmitted energy is well reproduced with the periodic approach. However, the modes are only captured approximately due to the assumption of an infinite structure. (C) 2010 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据