4.7 Article

Vibration-based damage detection in an aircraft wing scaled model using principal component analysis and pattern recognition

期刊

JOURNAL OF SOUND AND VIBRATION
卷 313, 期 3-5, 页码 560-566

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jsv.2007.12.008

关键词

-

向作者/读者索取更多资源

This study deals with vibration-based fault detection in structures and suggests a viable methodology based on principal component analysis (PCA) and a simple pattern recognition (PR) method. The frequency response functions (FRFs) of the healthy and the damaged structure are used as initial data. A PR procedure based on the nearest neighbour principle is applied to recognise between the categories of the damaged and the healthy wing data. A modified PCA method is suggested here, which not only reduces the dimensionality of the FRFs but in addition makes the PCA transformed data from the two categories more differentiable. It is applied to selected frequency bands of FRFs which permits the reduction of the PCA transformed FRFs to two new variables, which are used as damage features. In this study, the methodology is developed and demonstrated using the vibration response of a scaled aircraft wing simulated by a finite element (FE) model. The suggested damage detection methodology is based purely on the analysis of the vibration response of the structure. This makes it quite generic and permits its potential development and application for measured vibration data from real aircraft wings as well as for other real and complex structures. (C) 2008 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据