4.7 Article

Pseudozyma aphidis Induces Salicylic-Acid-Independent Resistance to Clavibacter michiganensis in Tomato Plants

期刊

PLANT DISEASE
卷 99, 期 5, 页码 621-626

出版社

AMER PHYTOPATHOLOGICAL SOC
DOI: 10.1094/PDIS-04-14-0377-RE

关键词

-

向作者/读者索取更多资源

The ability of plant pathogens to rapidly develop resistance to commonly used pesticides challenges efforts to maximize crop production. Fungal biocontrol agents have become an important alternative to chemical fungicides as a result of environmental concerns regarding conventional pesticides, including resistance issues. The complex mode of action of biocontrol agents reduces the likelihood that pathogens will develop resistance to them. We recently isolated a unique, biologically active isolate of the epiphytic fungus Pseudozyma aphidis. We show that the extracellular metabolites secreted by our P. aphidis isolate can inhibit Xanthomonas campestris pv. vesicatoria, X. campestris pv. campestris, Pseudomonas syringae pv. tomato, Erwinia amylovora, Clavibacter michiganensis, and Agrobacterium tumefaciens in vitro. Moreover, application of Pseudozyma aphidis spores on tomato plants in the greenhouse significantly reduced (by 60%) the incidence of bacterial wilt and canker disease caused by C. michiganensis subsp. michiganensis on those plants as well as disease severity by 35%. Furthermore, infected plants treated with P. aphidis were 25% taller than control infected plants. We found that P. aphidis activates PR1a-and other pathogenesis-related genes in tomato plants and can trigger an induced-resistance response against C. michiganensis that proceeds in a salicylic-acid-independent manner, as shown using NahG-transgenic tomato plants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据