4.6 Article

Effect of pretreatment on microstructure and photocatalytic activity of kaolinite/TiO2 composite

期刊

JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY
卷 87, 期 3, 页码 676-684

出版社

SPRINGER
DOI: 10.1007/s10971-018-4760-5

关键词

Kaolinite; Pretreatment; Kaolinite/TiO2 composite; Photocatalytic activity

资金

  1. Key Science and Technology Research Project of Henan province, China [182102210005]
  2. Key Scientific Research Projects for Institutes of Higher Education of Henan Province, China [15A430010]

向作者/读者索取更多资源

Kaolinite/TiO2 composites were prepared by using sol-gel method and raw kaolin, pretreated kaolinite and tetrabutyl titanate as the main raw materials. X-ray diffractometer, field-emission scanning electron microscope and infrared spectrometer analysis were carried out to characterize the phase composition and microstructure of the samples. The photocatalytic performance of the kaolinite/TiO2 composites were evaluated by degrading the methylene blue (MB) and phenol aqueous solution, respectively. The results show that intercalation and exfoliation reduced the size and thickness of kaolinite particles. Acid treatment improved the distribution and the loading quantity of TiO2 grains. When the kaolinite/TiO2 composites were calcined at 500 degrees C, the tetragonal structure of anatase particles of 30-100 nm in size were obtained, but the exfoliated kaolinite crystals were damaged. The degradation rate of MB increased gradually with the extension of photocatalytic reaction time and the enhancement of photocatalyst dosage. The adsorption performance of acid-treated kaolinite/TiO2 composite (AKT) was nearly the same as that of raw kaolin/TiO2 composite (RKT), but that of the exfoliated kaolinite/TiO2 composite (EKT) was the most excellent. The photocatalytic performance of AKT and EKT were better than that of RKT, and AKT exhibited the optimum property. Under a certain photocatalyst dosage and photocatalysis time, the absorption rate and the degradation rate decreased gradually with the enhancement of initial concentration of MB. Similar result was also acquired for the degradation of phenol. Both the acid treating and the exfoliating to kaolinite enhanced the photocatalytic performance of the kaolinite/TiO2 composite photocatalysts, but acid treatment may be more helpful to the preparation of high performance kaolinite/TiO2 composite photocatalyst. [GRAPHICS] .

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据