4.6 Article

Dry reforming of greenhouse gases CH4/CO2 over MgO-promoted Ni-Co/Al2O3-ZrO2 nanocatalyst: effect of MgO addition via sol-gel method on catalytic properties and hydrogen yield

期刊

JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY
卷 70, 期 1, 页码 111-124

出版社

SPRINGER
DOI: 10.1007/s10971-014-3280-1

关键词

Dry reforming; CH4/CO2; Syngas; Ni-Co/Al2O3-MgO-ZrO2; Sol-gel

资金

  1. Sahand University of Technology
  2. Iran Nanotechnology Initiative Council

向作者/读者索取更多资源

Sol-gel method was employed to prepare Ni-Co/Al2O3-MgO-ZrO2 nanocatalyst with various loadings of MgO (5, 10 and 25 wt%) for dry reforming of methane. The physiochemical properties of nanocatalysts were characterized by XRD, field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX), BET and fourier transform infrared spectroscopy (FTIR) analysis. Evaluation of catalytic performance was conducted in atmospheric pressure, stoichiometric feed ratio, GHSV of 24 l/g(cat) h and temperature range from 550 to 850 A degrees C. XRD patterns represented that as MgO content increases, the amorphous behavior slightly intensifies and also dispersion of active phase improves which probably caused by strong metal-support interaction. Furthermore, FESEM analysis confirmed that all of prepared samples are nano scale. EDX results besides verifying the declared claim about the dispersion of samples proved the presence and detected the position of the various elements. In addition, based on the FESEM analysis, narrow particle size distribution, uniform morphology and dispersion without agglomeration were found for Ni-Co/Al2O3-MgO-ZrO2 with 25 wt% MgO. Moreover, smallest average particle size 11.6 nm (close to the critical size for Ni-Co catalyst to avoid carbon formation) was obtained for this nanocatalyst. Also, according to the BET analysis, MgO rich nanocatalyst represented the higher surface area than the other ones. Based on the excellent characterizations, Ni-Co/Al2O3-MgO-ZrO2 with 25 wt% MgO exhibited the best products yield through all of the investigated temperature e.g. H-2 = 96.9 % and CO = 97.1 % at 850 A degrees C. Furthermore, this nanocatalyst demonstrated the stable yield with H-2/CO close to unit during 1,440 min stability test.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据