4.6 Article Proceedings Paper

Synthesis and characterization of the physical, chemical and mechanical properties of isocyanate-crosslinked vanadia aerogels

期刊

JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY
卷 48, 期 1-2, 页码 113-134

出版社

SPRINGER
DOI: 10.1007/s10971-008-1788-y

关键词

crosslinked vanadia aerogel; nano-foam; cryogenic temperature; specific energy absorption; split Hopkinson pressure bar; digital image correlation

向作者/读者索取更多资源

A strong lightweight material (X-VOx) was formulated by nanocasting a conformal 4 nm thin layer of an isocyanate-derived polymer on the entangled worm-like skeletal framework of typical vanadia aerogels. The mechanical properties were characterized under both quasi-static loading conditions (dynamic mechanical analysis, compression and flexural bending testing) as well as high strain rate loading conditions using a split Hopkinson pressure bar (SHPB). The effects of mass density, moisture concentration and low temperature on the mechanical properties were determined and evaluated. Digital image correlation was used to measure the surface strains through analysis of images acquired by ultra-high speed photography, indicating nearly uniform compression at all stages of deformation during compression. The energy absorption of X-VOx was plotted as a function of the density, strain rate and temperature, and compared with that of plastic foams. X-VOx remains ductile even at -180 C, a characteristic not found in most materials. This unusual ductility is derived from interlocking and sintering-like fusion of nanoworms during compression. X-VOx emerges as an ideal material for force protection under impact.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据