4.6 Article

The potential feasibility for soil improvement, based on the properties of biochars pyrolyzed from different feedstocks

期刊

JOURNAL OF SOILS AND SEDIMENTS
卷 13, 期 6, 页码 989-1000

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s11368-013-0698-y

关键词

Biochar; Feedstocks; Property; Soil improvement; Temperature

资金

  1. National Basic Research Program of China [2011CB100502]
  2. National Science and Technology Support Program [2012BAD15B04-2, 2012BAD05B04-3]
  3. Special Fund for Agro-scientific Research in the Public Interest [201003016]
  4. Fundamental Research Funds for the Central Universities

向作者/读者索取更多资源

Biochars have been considered as useful soil amendments due to their beneficial properties in improving soil fertility, carbon (C) sequestration, and soil decontamination. In our study, a series of biochars produced from different types of feedstocks at two pyrolysis temperatures (300 and 500 A degrees C) were characterized to evaluate their different potentials as soil amendments. Ten types of feedstocks were used to prepare biochars at the pyrolysis temperatures of 300 and 500 A degrees C, for 2 h. Chemical and physical analyses, X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier Transform Infrared (FTIR) analyses were conducted to determine differences in biochar properties. Then, soil incubation studies were used to investigate the relationships between these biochar properties and their different ameliorant values in soil. The pH, ash, total C, total potassium, total phosphorus, total base cation concentrations, surface areas, and total pore volumes of biochars produced at 500 A degrees C were higher than at 300 A degrees C, while the reverse applied for yields, total oxygen and total hydrogen, and average pore widths and particle sizes. Cluster analysis suggested that biochars derived from similar feedstock types belonged in the same category. The SEM, XRD, and FTIR analyses of typical biochars from the different categories suggested both variations and similarities in their characteristics. In addition, the results from soil incubation experiments were consistent with the conclusions made from biochar characteristics analysis. Biochars derived from swine manures, fruit peels, and leaves with high pH and macro-nutrients appeared appropriate to increase soil pH and soil nutrient availability; whereas, biochars from wetland plant residues with high C concentrations and Brunauer-Emmett-Teller were better for soil C sequestration and contaminant adsorption.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据