4.7 Article

Comparative mitochondrial genome analysis reveals the evolutionary rearrangement mechanism in Brassica

期刊

PLANT BIOLOGY
卷 18, 期 3, 页码 527-536

出版社

WILEY
DOI: 10.1111/plb.12414

关键词

Brassica; heterosplasmic; mitochondrial genome evolution; sub-stoichiometric shifting

资金

  1. National Natural Science Foundation of China [31372063]

向作者/读者索取更多资源

The genus Brassica has many species that are important for oil, vegetable and other food products. Three mitochondrial genome types (mitotype) originated from its common ancestor. In this paper, a B.nigra mitochondrial main circle genome with 232,407bp was generated through de novo assembly. Synteny analysis showed that the mitochondrial genomes of B.rapa and B.oleracea had a better syntenic relationship than B.nigra. Principal components analysis and development of a phylogenetic tree indicated maternal ancestors of three allotetraploid species in Us triangle of Brassica. Diversified mitotypes were found in allotetraploid B.napus, in which napus-type B.napus was derived from B.oleracea, while polima-type B.napus was inherited from B.rapa. In addition, the mitochondrial genome of napus-type B.napus was closer to botrytis-type than capitata-type B.oleracea. The sub-stoichiometric shifting of several mitochondrial genes suggested that mitochondrial genome rearrangement underwent evolutionary selection during domestication and/or plant breeding. Our findings clarify the role of diploid species in the maternal origin of allotetraploid species in Brassica and suggest the possibility of breeding selection of the mitochondrial genome.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据