4.5 Article

Preparation and application of carbon nanotubes/poly(o-toluidine) composite fibers for the headspace solid-phase microextraction of benzene, toluene, ethylbenzene, and xylenes

期刊

JOURNAL OF SEPARATION SCIENCE
卷 36, 期 21-22, 页码 3550-3557

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/jssc.201300682

关键词

BTEX; Carbon nanotubes; Gas chromatography; Poly(o-toluidine); Solid-phase microextraction

向作者/读者索取更多资源

A novel nanocomposite coating of poly(o-toluidine) and oxidized multiwalled CNTs (MWCNTs, where CNTs is carbon nanotubes) was electrochemically prepared on a stainless-steel wire. The applicability of the fiber was assessed for the headspace solid-phase microextraction of benzene, toluene, ethylbenzene, and xylenes in aqueous samples followed by GC with flame ionization detection. In order to obtain an adherent and stable composite coating, several experimental parameters related to the coating process, such as polymerization potential and time, and the concentration of o-toluidine and oxidized MWCNTs were optimized. The combination of MWCNTs and polymer in a nanocomposite form presents desirable opportunities to produce materials for new applications. The effects of various parameters on the efficiency of the headspace solid-phase microextraction process, such as desorption temperature and time, extraction temperature and time, and ionic strength were also investigated. At the optimum conditions, LODs were 0.03-0.06 g/L. The method showed linearity in the range of 0.5-300 g/L with coefficients of determination >0.99. The intraday and interday RSDs obtained at a 5 g/L concentration level (n = 5) using a single fiber were 1.2-5.2 and 3.2-7.5%, respectively. The fiber-to-fiber RSD (%; n = 3) at 5 g/L was 6.1-9.2%.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据