4.7 Review

Regulation of the NADPH Oxidase RBOHD During Plant Immunity

期刊

PLANT AND CELL PHYSIOLOGY
卷 56, 期 8, 页码 1472-1480

出版社

OXFORD UNIV PRESS
DOI: 10.1093/pcp/pcv063

关键词

Calcium; Innate immunity; Pathogen-associated molecular patterns; Pattern recognition receptors; Phosphorylation; Reactive oxygen species

资金

  1. Gatsby Charitable Foundation
  2. European Research Council [KAKENHI 24228008]
  3. RIKEN Special Postdoctoral Research Fellowship
  4. Japan Society for the Promotion of Science
  5. Uehara Memorial Foundation

向作者/读者索取更多资源

Pathogen recognition induces the production of reactive oxygen species (ROS) by NADPH oxidases in both plants and animals. ROS have direct antimicrobial properties, but also serve as signaling molecules to activate further immune outputs. However, ROS production has to be tightly controlled to avoid detrimental effects on host cells, but yet must be produced in the right amount, at the right place and at the right time upon pathogen perception. Plant NADPH oxidases belong to the respiratory burst oxidase homolog (RBOH) family, which contains 10 members in the model plant Arabidopsis thaliana. The perception of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs) leads to a rapid, specific and strong production of ROS, which is dependent on RBOHD. RBOHD is mainly controlled by Ca2+ via direct binding to EF-hand motifs and phosphorylation by Ca2+-dependent protein kinases. Recent studies have, however, revealed a critical role for a Ca2+-independent regulation of RBOHD. The plasma membrane-associated cytoplasmic kinase BIK1 (BOTRYTIS-INDUCED KINASE1), which is a direct substrate of the PRR complex, directly interacts with and phosphorylates RBOHD upon PAMP perception. Impairment of these phosphorylation events completely abolishes the function of RBOHD in immunity. These results suggest that RBOHD activity is tightly controlled by multilayered regulations. In this review, we summarize recent advances in our understanding of the regulatory mechanisms controlling RBOHD activation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据