4.7 Article

TBL3 and TBL31, Two Arabidopsis DUF231 Domain Proteins, are Required for 3-O-Monoacetylation of Xylan

期刊

PLANT AND CELL PHYSIOLOGY
卷 57, 期 1, 页码 -

出版社

OXFORD UNIV PRESS
DOI: 10.1093/pcp/pcv172

关键词

Acetylation; Arabidopsis; DUF231; Secondary wall; TBL; Xylan

资金

  1. US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-FG02-03ER15415]

向作者/读者索取更多资源

Xylan, a major constituent of secondary cell walls, is made of a linear chain of beta-1,4-linked xylosyl residues that are often substituted with glucuronic acid/methylglucuronic acid side chains and acetylated at O-2 and O-3. Previous studies have shown that ESK1, an Arabidopsis DUF231 protein, is an acetyltransferase catalyzing 2-O- and 3-O-monoacetylation of xylan. However, the esk1 mutation only causes a partial loss of xylan 2-O- and 3-O-monoacetylation, suggesting that additional xylan acetyltransferase activities are involved. In this report, we demonstrated the essential roles of two other Arabidopsis DUF231 genes, TBL3 and TBL31, in xylan acetylation. The expression of both TBL3 and TBL31 was shown to be induced by overexpression of the secondary wall master transcriptional regulator SND1 (secondary wall-associated NAC domain protein1) and down-regulated by simultaneous mutations of SND1 and its paralog NST1, indicating their involvement in secondary wall biosynthesis. bGlucurondase (GUS) reporter gene analysis showed that TBL3 and TBL31 were specifically expressed in the xylem and interfascicular fibers in stems and the secondary xylem in root hypocotyls. Expression of fluorescent protein- tagged TBL3 and TBL31 in protoplasts revealed their localization in the Golgi, where xylan biosynthesis occurs. Although mutation of either TBL3 or TBL31 alone did not cause any apparent alterations in cell wall composition, their simultaneous mutations were found to result in a reduction in xylan acetylation. Further structural analysis demonstrated that the tbl3 tbl31 double mutant had a specific reduction in 3-O-acetylation of xylan. In addition, the tbl3 tbl31 esk1 triple mutant displayed a much more drastic decrease in 3-O-acetylation of xylan, indicating their functional redundancy in xylan 3-O-acetylation. These findings indicate that TBL3 and TBL31 are secondary wall-associated DUF231 genes specifically involved in xylan 3-O-acetylation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据