4.3 Article

Reevaluated martian atmospheric mixing ratios from the mass spectrometer on the Curiosity rover

期刊

PLANETARY AND SPACE SCIENCE
卷 109, 期 -, 页码 154-158

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.pss.2015.02.014

关键词

Mars; Atmosphere; Isotopes; Mars Science Laboratory; Curiosity rover; Sample Analysis at Mars investigation

资金

  1. NASA

向作者/读者索取更多资源

The Sample Analysis at Mars (SAM) instrument suite of the Mars Science Laboratory (MSL) Curiosity rover is a miniature geochemical laboratory designed to analyze martian atmospheric gases as well as volatiles released by pyrolysis of solid surface materials (Mahaffy et al., 2012). SAM began sampling the martian atmosphere to measure its chemical and isotopic composition shortly after Curiosity landed in Mars' Gale Crater in August 2012 (Mahaffy et al., 2013). Analytical methods and constants required for atmospheric measurements with SAM's quadrupole mass spectrometer (QMS) were provided in a previous contribution (Franz et al., 2014). Review of results obtained through application of these constants to repeated analyses over a full martian year and supporting studies with laboratory instruments offer new insights into QMS performance that allow refinement of the calibration constants and critical reassessment of their estimated uncertainties. This report describes the findings of these studies, provides updated calibration constants for atmospheric analyses with the SAM QMS, and compares volume mixing ratios for the martian atmosphere retrieved with the revised constants to those initially reported (Mahaffy et al., 2013). Sufficient confidence is enabled by the extended data set to support calculation of precise abundances for CO rather than an upper limit. Reanalysis of data acquired on mission sols 45 and 77 (at solar longitudes of 175 degrees and 193 degrees, respectively) with the revised constants leads to the following average volume mixing ratios: CO2 0.957(+/- 0.016), N-2 0.0203(+/- 0.0003), Ar 0.0207(+/- 0.0002), O-2 1.73(+/- 0.06) x 10(-3), CO 749(+/- 0.026) x 10(-4). (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据