4.3 Article

Optimization of biohydrogen production by Enterobacter species using artificial neural network and response surface methodology

期刊

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4803746

关键词

-

向作者/读者索取更多资源

Optimization studies on fermentative hydrogen production were investigated using a facultative bacteria namely, Enterobacter species (MTCC 7104). The present study emphasizes the application of mathematical tools such as response surface methodology (RSM) and artificial neural network (ANN) to predict the maximum yield of hydrogen from the optimized carbon and nitrogen source. The key components such as glucose, initial pH, xylose, tryptone, yeast extract, sucrose, and peptone were screened using the Plackett-Burman design. Furthermore, rotatable central composite design and analysis of variance were adopted to investigate the interactive effect of the significant variables (xylose concentration, initial pH, and peptone concentration). Maximum experimental hydrogen yield of 1.94 mol H-2/mol xylose was achieved at the optimal points predicted by the RSM. Modeling ability of ANN and RSM has also been evaluated on predicting the maximum hydrogen yield with the estimated values of root mean square error (RMSE), multiple correlation coefficients (R-2), and standard error of prediction (SEP). The estimated values of RMSE, R-2, and SEP for ANN model and RSM model confirm that fitness and prediction accuracy of ANN model were higher when compared to RSM model. Energy conversion efficiency and energy recovery analysis were performed for hydrogen production process using xylose as the source material. (C) 2013 AIP Publishing LLC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据