4.4 Article Proceedings Paper

Femtosecond laser-fabricated biochip for studying symbiosis between Phormidium and seedling root

期刊

APPLIED PHYSICS B-LASERS AND OPTICS
卷 119, 期 3, 页码 503-508

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s00340-015-6055-7

关键词

-

资金

  1. Grants-in-Aid for Scientific Research [25706025, 25286038] Funding Source: KAKEN

向作者/读者索取更多资源

We present the fabrication of a waveguide-like structure in a polydimethylsiloxane (PDMS) polymer substrate using a femtosecond laser to study the mechanism of symbiosis between filamentous cyanobacteria, Phormidium, and a seedling root. While symbiosis occurring underground promotes the growth of vegetable seedlings, the details of the mechanism remain unclear. Understanding the mechanisms of Phormidium gliding to the seedling root will facilitate improving the mat formation of Phormidium, which will lead to increased vegetable production. We assumed a symbiosis mechanism in which sunlight propagates through the seedling root and is scattered underground to guide the Phormidium gliding. Once attached to the root, Phormidium uses the scattered light for photosynthesis. Photosynthetic products, in turn, promote an increase in Phormidium mat formation and vegetable growth. To verify this assumption, the optical characteristics of the seedling root were investigated. A waveguide-like structure with the same optical characteristics of the root was subsequently fabricated by femtosecond laser in PDMS polymer to assess the light illumination effect on Phormidium behavior.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据