4.2 Article Proceedings Paper

An optical dynamic mass redistribution assay reveals biased signaling of dualsteric GPCR activators

期刊

JOURNAL OF RECEPTORS AND SIGNAL TRANSDUCTION
卷 29, 期 3-4, 页码 140-145

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/10799890903047437

关键词

Dynamic mass redistribution; functional selectivity; dualsteric ligands; GPCR; muscarinic receptor

向作者/读者索取更多资源

Increasing attention is paid in basic science and in drug discovery to pathway selective intracellular signaling as a novel approach to achieve precise control of cell function via G protein-coupled receptors (GPCRs). With respect to signaling, GPCRs are often promiscuous in that more than one intracellular biochemical pathway is activated upon receptor stimulation by the endogenous transmitter or by exogenous drugs. We studied signaling by a novel class of GPCR activators that were designed to bind simultaneously to the orthosteric transmitter-binding site and the allosteric site of muscarinic acetylcholine receptors. An optical biosensor technique was applied to measure activation-induced dynamic mass redistribution (DMR) in CHO cells stably expressing the muscarinic receptor subtype of interest. The use of tools to modulate signaling and measuring G protein activation directly proved that DMR is a valid and comfortable approach to gain real-time insight into intracellular signaling pathway activation and to identify signaling pathway-selective drugs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据