4.2 Article

A near-annual palaeohydrological study based on testate amoebae from a sub-alpine mire: surface wetness and the role of climate during the instrumental period

期刊

JOURNAL OF QUATERNARY SCIENCE
卷 25, 期 2, 页码 190-202

出版社

WILEY
DOI: 10.1002/jqs.1295

关键词

sub-alpine peatland; testate amoebae; pollen; climate; instrumental period; hydrology; winter temperature

资金

  1. European Union [SUSTDEV-2004-3.1.4.1, EVK2-CT-2002-00136]
  2. National Centre of Competence in Research (NCCR) on Climate (Bern, Switzerland)
  3. Foundation for Polish Science (FNP)
  4. EM (Swiss NSF) [205321-109709/1]

向作者/读者索取更多资源

We present the first testate amoeba-based palaeohydrological reconstruction from the Swiss Alps, and the first depth to the water table (DWT) calibration dataset for this region. Compared to existing models, Our new calibration dataset performs well (RMSEP=4.88), despite the length of the water table gradient covered (53 cm). The present-day topography and vegetation of the study mire Mauntschas suggest that it is partly ombrotrophic (large Sphagnum fuscum hummocks, one of which was the coring site) but mostly under the minerotrophic influence of springs in the mire and runoff from the surrounding area. Ombrotrophic Sphagnum fuscum hummocks developed at the sampling site only during the last 50 years, when testate amoebae indicate a shift towards dry and/or acid conditions. Prior to AD 1950 the water table was much higher, suggesting that the influence of the mineral-rich water prevented the development of ombrotrophic hummocks. The reconstructed DWT correlated with Pinus cembra pollen accumulation rates, suggesting that testate amoebae living on the mire and P. cembra growing Outside of it partly respond to the salve factor(s). Finally, temperature trends from the nearby meteorological station paralleled trends in reconstructed DWT. However, contrary to other studies made on raised bogs of northwestern Europe, the highest correlation was observed for winter temperature, despite the fact that testate amoebae would more logically respond to moisture conditions during the growing season. The observed correlation with winter temperature might reflect a control of winter severity on surface moisture during at least the first part of the growing season, through snow melt and soil frost phenomena influencing run-Off. More ecohydrological work on subalpine mires is needed to understand the relationships between climate, testate amoebae and peatland development. Copyright (C) 2009 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据