4.5 Article

IUPAC critical evaluation of the rotational-vibrational spectra of water vapor, Part III: Energy levels and transition wavenumbers for H216O

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jqsrt.2012.10.002

关键词

Water vapor; Transition wavenumbers; Atmospheric physics; Energy levels; MARVEL; Information system; Database; W@DIS; Infrared spectra; Microwave spectra

资金

  1. International Union of Pure and Applied Chemistry [2004-035-1-100]
  2. European Research Council [267219]
  3. Scientific Research Fund of Hungary [OTKA K77825, NK83583]
  4. National Science Foundation of the U.S.A. [ATM-0803135]
  5. Belgian Federal Science Policy Office [EV/35/3A, SD/AT/01A, PRODEX 1514901NLSFe(IC)]
  6. NASA Earth Observing System [NAG5-13534]
  7. Groupement de Recherche International SAMIA (Spectroscopie d'Absorption des Molecules d'Interet Atmospherique)
  8. Natural Environment Research Council [NE/F01967X/1] Funding Source: researchfish
  9. Directorate For Geosciences
  10. Div Atmospheric & Geospace Sciences [1156862] Funding Source: National Science Foundation
  11. NERC [NE/F01967X/1] Funding Source: UKRI

向作者/读者索取更多资源

This is the third of a series of articles reporting critically evaluated rotational-vibrational line positions, transition intensities, and energy levels, with associated critically reviewed labels and uncertainties, for all the main isotopologues of water. This paper presents experimental line positions, experimental-quality energy levels, and validated labels for rotational-vibrational transitions of the most abundant isotopologue of water, (H2O)-O-16. The latest version of the MARVEL (Measured Active Rotational-Vibrational Energy Levels) line-inversion procedure is used to g determine the rovibrational energy levels of the electronic ground state of (H2O)-O-16 from experimentally measured lines, together with their self-consistent uncertainties, for the spectral region up to the first dissociation limit. The spectroscopic network of (H2O)-O-16 contains two components, an ortho (o) and a para (p) one. For o-(H2O)-O-16 and p-(H2O)-O-16, experimentally measured, assigned, and labeled transitions were analyzed from more than 100 sources. The measured lines come from one-photon spectra recorded at room temperature in absorption, from hot samples with temperatures up to 3000 K recorded in emission, and from multiresonance excitation spectra which sample levels up to dissociation. The total number of transitions considered is 184 667 of which 182 156 are validated: 68 027 between para states and 114 129 ortho ones. These transitions give rise to 18 486 validated energy levels, of which 10 446 and 8040 belong to o-(H2O)-O-16 and p-(H2O)-O-16, respectively. The energy levels, including their labeling with approximate normal-mode and rigid-rotor quantum numbers, have been checked against ones determined from accurate variational nuclear motion computations employing exact kinetic energy operators as well as against previous compilations of energy levels. The extensive list of MARVEL lines and levels obtained are deposited in the supplementary data of this paper, as well as in a distributed information system applied to water, W@DIS, where they can easily be retrieved. (C) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据