4.5 Article Proceedings Paper

Effect of aggregation on the absorption cross-section of fractal soot aggregates and its impact on LII modelling

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jqsrt.2009.06.017

关键词

Fractal soot aggregates; Absorption cross-section; Laser-induced incandescence

向作者/读者索取更多资源

This study concerns the effect of particle aggregation on laser heating rate of soot aggregates in laser-induced incandescence. Three aggregate absorption models were investigated: the Rayleigh-Debye-Gans approximation, the electrostatics approximation, and the numerically exact generalized multi-sphere Mie-solution method. Fractal aggregates containing 5-893 primary particles of 30 nm in diameter were generated numerically using a combined particle-cluster and cluster-cluster aggregation algorithm with specific fractal parameters typical of soot. The primary particle size parameters considered are 0.089, 0.177, and 0.354. The Rayleigh-Debye-Gans approximation neglects the effect of particle aggregation on absorption; so it underestimates the aggregate absorption cross-section area by approximately 10%, depending on the aggregate size and primary particle size parameter. The electrostatics approximation is somewhat better than the Rayleigh-Debye-Gans approximation, but cannot account for the effect of primary particle size parameter. The aggregate absorption submodel affects the calculated soot temperature in laser-induced incandescence mainly in the low laser fluence regime. At high laser fluences, the effect diminishes due to the enhanced importance of soot sublimation cooling and neglect of aggregation effect in the sublimation in the present numerical model of laser-induced incandescence. Crown Copyright (C) 2009 Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据