4.5 Article

Enhancement or quenching effect of metallic nanodimer on spontaneous emission

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jqsrt.2009.09.009

关键词

Nanodimer; MMP; Excitation rate; Nonradiative decay rate; Radiative decay rate; Apparent quantum yield; Spontaneous emission; Lifetime

资金

  1. National Science Council, Taiwan, R.O.C. [NSC 96-2221-E-182 -021]

向作者/读者索取更多资源

The plasmonic effects of a metallic (Au or Ag) nanodimer on the excitation and emission of a single emitter placed within the gap of the nanodimer are studied to identify its overall performance (enhancement or quenching) for the spontaneous emission. The process of a spontaneous emission is divided into two stages for analysis: the excitation and the subsequent emission stages. For the excitation stage, the amplification of the local electric field around the gap region is studied to show the converging-lens effect of the nanodimer for focusing an incident light. For the emission stage, the apparent quantum yield of an electric dipole (the excited emitter) in the presence of the nanodimer is studied in terms of its radiative and nonradiative decay rates. Both models are simulated by the multiple multi-pole methods for solving Maxwell's equations. The results indicate that the overall enhancement factor of a metallic nanodimer on the spontaneous emission depends not only on its dimension (radius and gap) but also on the absorption and emission spectra of the emitter. Moreover, there is an optimal dimension (radius and gap) of a nanodimer for obtaining the maximum enhancement to a specific spontaneous emission. In addition, the observed emission spectrum of the emitter can be modified by the nearby nanodimer (a low-pass filter), and its lifetime can be reduced by two or three orders of magnitude due to the energy transfer between them. (C) 2009 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据