4.5 Article

Decreasing the amount of trypsin in in-gel digestion leads to diminished chemical noise and improved protein identifications

期刊

JOURNAL OF PROTEOMICS
卷 109, 期 -, 页码 16-25

出版社

ELSEVIER
DOI: 10.1016/j.jprot.2014.06.017

关键词

Chemical noise; Trypsin autolysis; In-gel digestion; Mass spectrometry; Proteomics

资金

  1. Peking University
  2. Thousand Young Talents program of Chinese government
  3. National Natural Science Foundation of China [21305006]

向作者/读者索取更多资源

Pre-fractionation by gel electrophoresis is often combined with liquid chromatography-mass spectrometry (LC-MS) for large-scale profiling of complex protein samples. An essential component of this widely applied proteomic platform is in-gel protein digestion. In nearly two decades of practicing this approach, an extremely high level of trypsin has been utilized due to the consideration of slow enzyme diffusion into the gel matrix. Here we report that trypsin autolysis products contribute to the bulk of chemical noise in in-gel digestion and remarkably we found evidence that the amount of trypsin can be slashed by an order of magnitude with comparable digestion performance. By revising perhaps the most critical element of this decade-old digestion protocol, the proteomics community relying on gel separation prior to LC-MS analysis will benefit instantly from much lowered cost due to enzyme expenditure. More importantly, substantially reduced chemical noise (i.e., trypsin self-cleavage products) as a result of less enzyme usage translates into more protein identifications when limited amounts of samples are the interest of interrogation. Biological significance In-gel digestion is one of the most widely used methods in proteomics. An exceedingly high level of trypsin has been utilized due to the consideration of slow enzyme diffusion into the gel matrix. This requirement has been faithfully kept in nearly two decades of practicing this approach. Here we report that trypsin concentration can be slashed by at least an order of magnitude while still providing comparable digestion performance. Thus the proteomics community relying on gel separation prior to LC-MS analysis will benefit instantly from much lowered enzyme cost. More importantly, substantially reduced chemical noise (i.e., trypsin autolysis products) due to less enzyme usage translates into similar to 30% more protein identifications when limited amounts of protein samples are analyzed. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据