4.5 Article

Modulation of the yeast protein interactome in response to DNA damage

期刊

JOURNAL OF PROTEOMICS
卷 100, 期 -, 页码 25-36

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jprot.2013.11.007

关键词

Protein interaction network; DNA damage; Protein-fragment complementation assay; MMS; Yeast; P-bodies

资金

  1. Canadian Institute of Health Research (CIHR) [GMX-191597]
  2. NSERC
  3. PROTEO

向作者/读者索取更多资源

Cells deploy diverse mechanisms to physiologically adapt to potentially detrimental perturbations. These mechanisms include changes in the organization of protein-protein interaction networks (PINs). Most PINs characterized to date are portrayed in a single environmental condition and are thus likely to miss important connections among biological processes. In this report, we show that the yeast DHFR-PCA on high-density arrays allows to detects modulations of protein-protein interactions (PPIs) in different conditions by testing more than 1000 PPIs in standard and in a drug-inducing DNA damage conditions. We identify 156 PPIs that show significant modulation in response to DNA damage. We provide evidence that modulated PPIs involve essential genes (NOP7, EXO84 and LAS17) playing critical roles in response to DNA damage. Additionally, we show that a significant proportion of PPI changes are likely explained by changes in protein localization and, to a lesser extent, protein abundance. The protein interaction modules affected by changing PPIs support the role of mRNA stability and translation, protein degradation and ubiquitylation and the regulation of the actin cytoskeleton in response to DNA damage. Overall, we provide a valuable tool and dataset for the study of the rewiring of PINs in response to environmental perturbations. Biological significance We show that the DHFR-PCA is a high-throughput method that allows the detection of changes in PPIs associated with different environmental conditions using DNA damage response as a testbed. We provide a valuable resource for the study of DNA damage in eukaryotic cells. This article is part of a Special Issue: Can Proteomics Fill the Gap Between Genomics and Phenotypes? (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据