4.5 Article

A proteomic study of in-root interactions between chickpea pathogens: The root-knot nematode Meloidogyne artiellia and the soil-borne fungus Fusarium oxysporum f. sp ciceris race 5

期刊

JOURNAL OF PROTEOMICS
卷 74, 期 10, 页码 2034-2051

出版社

ELSEVIER
DOI: 10.1016/j.jprot.2011.05.026

关键词

-

资金

  1. Comision Interministerial de Ciencia y Tecnologia (CICYT) [AGL2003-00640]
  2. Ministerio Educacion y Ciencia of Spain

向作者/读者索取更多资源

Fusarium wilt caused by the fungus Fusarium oxysporum f. sp. ciceris (Foc) is the main soilborne disease limiting chickpea production. Management of this disease is achieved mainly by the use of resistant cultivars. However, co-infection of a Foc-resistant plant by the fungus and the root-knot nematode Meloidogyne artiellia (Ma) causes breakdown of the resistance and thus limits its efficacy in the control of Fusarium wilt. In this work we aimed to reveal key aspects of chickpea:Foc:Ma interactions, studying fungal- and nematode-induced changes in root proteins, using chickpea lines 'CA 336.14.3.0' and 'ICC 14216 K' that show similar resistant (Foc race 5) and susceptible (Ma) responses to either pathogen alone but a differential response after co-infection with both pathogens. 'CA 336.14.3.0' and 'ICC 14216 K' chickpea plants were challenged with Foc race 5 and Ma, either in single or in combined inoculations, and the root proteomes were analyzed by two-dimensional gel electrophoresis using three biological replicates. Pairwise comparisons of treatments indicated that 47 protein spots in 'CA 336.14.3.0' and 31 protein spots in 'ICC 14216 K' underwent significant changes in intensity. The responsive protein spots tentatively identified by MALDI TOF-TOF MS (27 spots for 'CA 336.14.3.0' and 15 spots for 'ICC 14216 K') indicated that same biological functions were involved in the responses of either chickpea line to Foc race 5 and Ma, although common as well as line-specific responsive proteins were found within the different biological functions. To the best of our knowledge, this is the first study at the root proteome level of chickpea response to a biotic stress imposed by single and joint infections by two major soil-borne pathogens. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据