4.7 Article

Empirical Multidimensional Space for Scoring Peptide Spectrum Matches in Shotgun Proteomics

期刊

JOURNAL OF PROTEOME RESEARCH
卷 13, 期 4, 页码 1911-1920

出版社

AMER CHEMICAL SOC
DOI: 10.1021/pr401026y

关键词

proteomics; tandem mass spectrometry; peptide identification; false discovery rate; peptide-spectrum matches

资金

  1. European Union [282506]
  2. ERC [280271]
  3. Russian Foundation for Basic Research [11-04-00515]
  4. European Research Council (ERC) [280271] Funding Source: European Research Council (ERC)

向作者/读者索取更多资源

Data-dependent tandem mass spectrometry (MS/MS) is one of the main techniques for protein identification in shotgun proteomics. In a typical LC MS/MS workflow, peptide product ion mass spectra (MS/MS spectra) are compared with those derived theoretically from a protein sequence database. Scoring of these matches results in peptide identifications. A set of peptide identifications is characterized by false discovery rate (FDR), which determines the fraction of false identifications in the set. The total number of peptides targeted for fragmentation is in the range of 10 000 to 20 000 for a several-hour LC MS/MS run. Typically, <50% of these MS/MS spectra result in peptide-spectrum matches go (PSMs). A small fraction of PSMs pass the preset FDR level (commonly 1%) giving a list of identified proteins, yet a large number of correct PSMs corresponding to the peptides originally present in the sample are left behind in the grey area below the identity threshold. Following the numerous efforts to recover these correct PSMs, here we investigate the utility of a scoring scheme based on the multiple PSM descriptors available from the experimental data. These descriptors include retention time, deviation between experimental and theoretical mass, number of missed cleavages upon in-solution protein digestion, precursor ion fraction (PIF), PSM count per sequence, potential modifications, median fragment mass error, C-13 isotope mass difference, charge states, and number of PSMs per protein. The proposed scheme utilizes a set of metrics obtained for the corresponding distributions of each of the descriptors. We found that the proposed PSM scoring algorithm differentiates equally or more efficiently between correct and incorrect identifications compared with existing postsearch validation approaches.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据