4.7 Article

Quantitative Proteomics Reveals the Role of Protein Phosphorylation in Rice Embryos during Early Stages of Germination

期刊

JOURNAL OF PROTEOME RESEARCH
卷 13, 期 3, 页码 1766-1782

出版社

AMER CHEMICAL SOC
DOI: 10.1021/pr401295c

关键词

phosphorylation; proteomics; rice; seed germination

资金

  1. National Natural Science Foundation of China [31271805]

向作者/读者索取更多资源

Seed germination begins with water uptake and ends with radicle emergence. A gel-free phosphoproteomic technique was used to investigate the role of protein phosphorylation events in the early stages of rice seed germination. Both seed weight and ATP content increased gradually during the first 24 h following imbibition. Proteomic analysis indicated that carbohydrate metabolism- and protein synthesis/degradation-related proteins were predominantly increased and displayed temporal patterns of expression. Analyses of cluster and protein-protein interactions indicated that the regulation of sucrose synthases and alpha-amylases was the central event controlling germination. Phosphoproteomic analysis identified several proteins involved in protein modification and transcriptional regulation that exhibited significantly temporal changes in phosphorylation levels during germination. Cluster analysis indicated that 12 protein modification-related proteins had a peak abundance of phosphoproteins at 12 h after imbibition. These results suggest that the first 12 h following imbibition is a potentially important signal transduction phase for the initiation of rice seed germination. Three core components involved in brassinosteroid signal transduction displayed significant increases in phosphoprotein abundance during the early stages of germination. Brassinolide treatment increased the rice seed germination rate but not the rate of embryonic axis elongation. These findings suggest that brassinosteroid signal transduction likely triggers seed germination.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据