4.7 Article

Cadmium Stress Responses in Brassica juncea: Hints from Proteomics and Metabolomics

期刊

JOURNAL OF PROTEOME RESEARCH
卷 12, 期 11, 页码 4979-4997

出版社

AMER CHEMICAL SOC
DOI: 10.1021/pr400793e

关键词

Brassica juncea; cadmium chloride; bioremediation; abiotic stress responses; mass spectrometry

资金

  1. Interuniversity Consortium for Biotechnologies (CIB)

向作者/读者索取更多资源

Among heavy metal stressors, cadmium (Cd) pollution is one leading threat to the environment. In this view, research efforts have been increasingly put forward to promote the individuation of phytoextractor plants that are capable of accumulating and withstanding the toxic metals, including Cd, in the aerial parts. We hereby adopted the hyperaccumulator B. juncea (Indian mustard) as a model to investigate plant responses to Cd stress at low (25 mu M) and high (100 mu M) doses. Analytical strategies included mass-spectrometry-based determination of Cd and the assessment of its effect on the leaf proteome and metabolome. Results were thus integrated with routine physiological data. Taken together, physiology results highlighted the deregulation of photosynthesis efficiency, ATP synthesis, reduced transpiration, and the impairment of light-independent carbon fixation reactions. These results were supported at the proteomics level by the observed Cd-dependent alteration of photosystem components and the alteration of metabolic enzymes, including ATP synthase subunits, carbonic anhydrase, and enzymes involved in antioxidant responses (especially glutathione and phytochelatin homeostasis) and the Calvin cycle. Metabolomics results confirmed the alterations of energy-generating metabolic pathways, sulfur-compound metabolism (GSH and PCs), and Calvin cycle. Besides, metabolomics results highlighted the up-regulation of phosphoglycolate, a byproduct of the photorespiration metabolism. This was suggestive of the likely increased photorespiration rate as a means to cope with Cd-induced unbalance in stomata] conductance and deregulation of CO2 homeostasis, which would, in turn, promote CO2 depletion and O-2 (and thus oxidative stress) accumulation under prolonged photosynthesis in the leaves from plants exposed to high doses of CdCl2. Overall, it emerges that Cd-stressed B. juncea might rely on photorespiration, an adaptation that would prevent the over-reduction of the photosynthetic electron transport chain and photoinhibition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据