4.7 Article

Overexpression of CD38 Decreases Cellular NAD Levels and Alters the Expression of Proteins Involved in Energy Metabolism and Antioxidant Defense

期刊

JOURNAL OF PROTEOME RESEARCH
卷 13, 期 2, 页码 786-795

出版社

AMER CHEMICAL SOC
DOI: 10.1021/pr4010597

关键词

CD38; proteomics; chaperones; oxidative stress; glycolytic enzymes

资金

  1. NSFC [31270871]
  2. MOEC [2012Z02293]

向作者/读者索取更多资源

Nicotinamide adenine dinucleotide (NAD) is a coenzyme found in all living cells and mediates multiple cellular signaling pathways. In the present study, a 35% decrease of cellular NAD level is achieved by stable expression of the N-terminal truncated CD38, a NAD hydrolase. CD38-expressing (CD38(+)) cells have the lower growth rate and are more susceptive to oxidative stress than the wild type cells and empty vector-transfected (CD38(-)) cells. Quantitative proteomic analysis shows that 178 proteins are down-regulated in CD38(+) cells, which involve in diverse cellular processes including glycolysis, RNA processing and protein synthesis, antioxidant, and DNA repair. Down regulation of six selected proteins is confirmed by Western blotting. However, down-regulation of mRNA expressions of genes associated with glycolysis, antioxidant, and DNA repair is less significant than the corresponding change in protein expression, suggesting the low NAD level impairs the protein translational machinery in CD38(+) cells. Down-regulation of antioxidant protein and DNA-repair protein expression contributes to the susceptibility of CD38(+) cells to oxidative stress. Taken together, these results demonstrate that CD38(+) cells are a useful model to study effects of the cellular NAD levels on cellular processes and establish a new linker between cellular NAD levels and oxidative stress.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据