4.7 Article

Quantitative Proteomic Profiling Studies of Pancreatic Cancer Stem Cells

期刊

JOURNAL OF PROTEOME RESEARCH
卷 9, 期 7, 页码 3394-3402

出版社

AMER CHEMICAL SOC
DOI: 10.1021/pr100231m

关键词

cancer stem cells; capillary isoelectric focusing; two-dimensional separation; proteome profiling; differential expression; spectral count; pathway analysis

资金

  1. National Cancer Institute [R21CA134623]
  2. National Institutes of Health [R01GM49500]

向作者/读者索取更多资源

Analyzing subpopulations of tumor cells in tissue is a challenging subject in proteomic studies. Pancreatic cancer stem cells (CSCs) are such a group of cells that only constitute 0.2-0.8% of the total tumor cells but have been found to be the origin of pancreatic cancer carcinogenesis and metastasis. Global proteome profiling of pancreatic CSCs from xenograft tumors in mice is a promising way to unveil the molecular machinery underlying the signaling pathways. However, the extremely low availability of pancreatic tissue CSCs (around 10 000 cells per xenograft tumor or patient sample) has limited the utilization of currently standard proteomic approaches which do not work effectively with such a small amount of material. Herein, we describe the profiling of the proteome of pancreatic CSCs using a capillary scale shotgun technique by coupling offline capillary isoelectric focusing(cIEF) with nano reversed phase liquid chromatography(RPLC) followed by spectral counting peptide quantification. A whole cell lysate from 10 000 cells which corresponds to similar to 1 mu g of protein material is equally divided for three repeated cIEF separations where around 300 ng of peptide material is used in each run. In comparison with a nontumorigenic tumor cell sample, among 1159 distinct proteins identified with FDR less than 0.2%, 169 differentially expressed proteins are identified after multiple testing corrections where 24% of the proteins are upregulated in the CSCs group. Ingenuity Pathway analysis of these differential expression signatures further suggests significant involvement of signaling pathways related to apoptosis, cell proliferation, inflammation, and metastasis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据