4.7 Article

Defining the regulated secreted proteome of rodent adipocytes upon the induction of insulin resistance

期刊

JOURNAL OF PROTEOME RESEARCH
卷 7, 期 3, 页码 1251-1263

出版社

AMER CHEMICAL SOC
DOI: 10.1021/pr7006945

关键词

O-GlcNAc; insulin resistance; tandem mass spectrometry; shotgun proteomics; type II diabetes; metabolic syndrome; glycosylation; adipocytokine

向作者/读者索取更多资源

Insulin resistance defines the metabolic syndrome and precedes, as well is the hallmark of, type II diabetes. Adipocytes, besides being a major site for energy storage, are endocrine in nature and secrete a variety of proteins, adipocytokines (adipokines), that can modulate insulin sensitivity, inflammation, obesity, hypertension, food intake (anorexigenic and orexigenic), and general energy homeostasis. Recent data demonstrates that increased intracellular glycosylation of proteins via O-GlcNAc can induce insulin resistance and that a rodent model with genetically elevated O-GlcNAc levels in muscle and fat displays hyperleptinemia. The link between O-GlcNAc levels, insulin resistance, and adipocytokine secretion is further explored here. First, with the use of immortalized and primary rodent adipocytes, the secreted proteome of differentiated adipocytes is more fully elucidated by the identification of 97 and 203 secreted proteins, respectively. Mapping of more than 80 Winked glycosylation sites on adipocytokines from the cell lines further defines this proteome. Importantly, adipocytokines that are modulated when cells are shifted from insulin responsive to insulin resistant conditions are determined. By the use of two protocols for inducing insulin resistance, classical hyperglycemia with chronic insulin exposure and pharmacological elevation of O-GlcNAc levels, several proteins are identified that are regulated in a similar fashion under both conditions including HCNP, Quiescin Q6, Angiotensin, lipoprotein lipase, matrix metalloproteinase 2, and slit homologue 3. Detection of these potential prognostic/diagnostic biomarkers for metabolic syndrome, type II diabetes, and the resulting complications of both diseases further establishes the central role of the O-GlcNAc modification of intracellular proteins in the pathophysiology of these conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据