4.5 Article

Sliding mode control of drum water level in an industrial boiler unit with time varying parameters: A comparison with H∞-robust control approach

期刊

JOURNAL OF PROCESS CONTROL
卷 22, 期 10, 页码 1844-1855

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jprocont.2012.10.003

关键词

Boiler unit; Drum water level; Time varying model; Parametric uncertainties; Sliding mode; H-infinity control

向作者/读者索取更多资源

In steam power-plants, to prevent over-heating of drum components or flooding of steam lines, perfect control of drum water level is of great importance. But during the operation, disturbances affecting water level, model uncertainties and parameter mismatch due to variant operating conditions lead to the variation of model parameters. In this paper, under transient conditions and in the presence of model uncertainties, two control strategies are implemented to achieve desired tracking of drum water level: robust sliding mode and H-infinity control. Two transfer functions between drum water level (output variable); feed-water and steam mass rates (input variables) are considered. For the dynamic system with time varying characteristic and parametric uncertainties, a sliding mode controller is developed and an optimal H-infinity, controller is designed based on mu-synthesis with DK-iteration algorithm. For different desired commands of drum water level (including a sequence of steps and ramps-steps); it is observed that both control strategies guarantee robust stability and performance of the system without actuators saturation (control signals are bounded). However, using the sliding mode controller leads to the more smooth and rapid time responses of drum water level with less oscillatory behaviour of control efforts (and consequently less energy consumption). In addition, for tracking objectives in short command times, sliding mode controller performs more appropriately. (C) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据