4.8 Article

Modeling dendrite growth during lithium electrodeposition at sub-ambient temperature

期刊

JOURNAL OF POWER SOURCES
卷 246, 期 -, 页码 84-89

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jpowsour.2013.07.056

关键词

Lithium electrodeposition; Dendrites; Diffusion; Solid electrolyte interface; Temperature effects

向作者/读者索取更多资源

Increased propensity for dendritic lithium electrodeposition during sub-ambient temperature operation has been widely reported in lithium battery systems, yet is not fully understood. In the present paper, a mathematical model is developed to quantify the dendritic growth rate during lithium electrodeposition at sub-ambient temperature. This model builds on a diffusion reaction framework presented recently by Akolkar [J. Power Sources 232 (2013) 23-28]. Using a steady-state diffusion model with a concentration-dependent diffusion coefficient, the lithium-ion concentration depletion in the stagnant Nernst diffusion boundary layer near the lithium surface is modeled. A surface electrochemical reaction model is then employed to correlate the lithium concentration depletion to the dendrite growth rate. Temperature effects on the lithium-ion transport and its electrochemical surface reaction are incorporated in the model via an Arrhenius-type temperature-dependence of the diffusion coefficient and the apparent charge transfer coefficient. It is shown that lowering the system temperature has the effect of increasing the lithium-ion diffusion resistance and decreasing the surface film thickness - conditions favorable for the formation of dendrites during lithium electrodeposition. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据