4.8 Article

Ni-WC/C nanocluster catalysts for urea electrooxidation

期刊

JOURNAL OF POWER SOURCES
卷 264, 期 -, 页码 282-289

出版社

ELSEVIER
DOI: 10.1016/j.jpowsour.2014.04.104

关键词

Nanostructure electrocatalysts; Tungsten carbide; Synergistic effect; Electrooxidation of urea

资金

  1. National Natural Science Foundation of China [21276203, 21303132]
  2. Specialized Research Fund for the Doctoral Program of Higher Education of China [20110201130002]

向作者/读者索取更多资源

A nanocluster Ni-WC/C electrocatalyst is prepared through a sequential impregnation method and is used for the urea electrooxidation in alkaline conditions. The micro-morphology, lattice parameter, composition and surface states of Ni-WC/C particles are determined by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive X-ray (EDX) and X-ray photoelectron spectrometry (XPS) analysis. The electrooxidation activity and stability of the Ni-WC/C catalyst are also investigated by cyclic voltammograms and chronoamperograms. Characterization results indicate that the Ni nanoclusters are uniformly distributed on the WC/C framework, and the Ni-WC/C catalyst shows high electrocatalytic activity and stability for urea electrooxidation. The maximum current density at the Ni-WC/C electrode is almost 700 mA cm(-2) mg(-1) which is one order of magnitude higher than that at the Ni/C electrode, and the steady current density at the Ni-WC/C electrode is also markedly improved. Furthermore, the ESA values and XPS spectra indicate that the enhanced performance of the Ni-WC/C catalyst could be attributed to the structure effect and electron effect between nickel and tungsten carbide. 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据