4.8 Article

Combinatorial discovery of Ni-based binary and ternary catalysts for hydrazine electrooxidation for use in anion exchange membrane fuel cells

期刊

JOURNAL OF POWER SOURCES
卷 247, 期 -, 页码 605-611

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jpowsour.2013.08.107

关键词

Direct hydrazine hydrate fuel cells; Anion exchange membrane fuel cells; Combinatorial chemistry; Hydrazine oxidation; Ni-based binary and ternary catalysts

向作者/读者索取更多资源

Ni-based catalysts, binary Ni-M (with M = Mn, Fe, Zn, La) and ternary Ni-Mn-Fe and Ni-Zn-La were investigated for hydrazine oxidation in direct hydrazine hydrate fuel cell anodes by a temperature controlled 16-channel electrochemical combinatorial array. The binary Ni0.8Zn0.2 and Ni0.9La0.1 catalysts are significantly more active than the Ni reference catalyst for hydrazine oxidation. While the best Ni0.8Zn0.1La0.1 ternary catalyst is close to the high active binary catalysts in composition. Additionally, Ni0.6Fe0.2Mn0.2 catalysts also showed high catalytic activity for hydrazine oxidation in alkaline media over standard Ni catalyst. The X-ray diffraction (XRD) analysis indicated that the alloying effect between Ni and added elements improves the catalytic activity for hydrazine oxidation. As a result of the screening tests and our previous research, unsupported binary Ni0.87Zn0.13 and Ni0.9La0.1 catalysts were synthesized by spray pyrolysis and tested in a direct hydrazine hydrate fuel cell MEA (DHFC) producing 486 mW cm(-2) and 459 mW cm(-2), respectively. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据