4.8 Article

A study of lithium ion batteries cycle aging by thermodynamics techniques

期刊

JOURNAL OF POWER SOURCES
卷 247, 期 -, 页码 527-533

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jpowsour.2013.08.053

关键词

Thermodynamics; Entropy; Enthalpy; Lithium ion batteries; Cycle aging; Phase transition

向作者/读者索取更多资源

Lithium ion batteries (LiB) are cycled under a galvanostatic regime (similar to C/2-rate) between 2.75 V and 4.2 V for up to 1000 cycles. After each completed 100 cycles, the discharge capacity, capacity loss, average discharge potential were determined under the same C/2 rate. Then cells undergo an additional charge and discharge cycle at C/6 rate followed by a thermodynamics measurements test. This enables open-circuit potential (OCP), entropy (Delta S) and enthalpy (Delta H) data to be assessed. It is found that with increasing cycle number, the entropy and enthalpy profiles show more significant changes than those observed in the discharge and the OCP curves especially at particular SOC and OCP values. These differences are attributed to the higher sensitivity of entropy and enthalpy state functions to changes in the crystal structure of the graphite anode and the lithiated cobalt oxide (LCO) induced by cycle aging compared to the free energy Delta G (OCP) alone. The thermodynamics data are supported by post-mortem X-ray diffractometry (XRD) and Raman scattering (RS) analyses on the electrode materials. The results show important LCO crystal structure degradation, whereas, surprisingly, the graphite anode remains almost unaffected by heavy cycling, if not improved. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据