4.8 Article

Copper-doped Li4Ti5O12/carbon nanofiber composites as anode for high-performance sodium-ion batteries

期刊

JOURNAL OF POWER SOURCES
卷 272, 期 -, 页码 860-865

出版社

ELSEVIER
DOI: 10.1016/j.jpowsour.2014.08.131

关键词

Copper-doping; Lithium titanium oxide.; Carbon nanofiber; Sodium-ion battery

资金

  1. Chinese Universities Scientific Fund [14D310107]

向作者/读者索取更多资源

Lithium titanium oxide (Li4Ti5O12) is a promising anode material, owing to its superior safety and reliability. However, the main challenge of Li4Ti5O12 is the low material conductivity which restricts its electrochemical performance. In order to use Li4Ti5O12 in practical sodium-ion batteries, copper-doped Li4Ti5O12 (Li4-xCuxTi5O12, x = 0, 0.05, 0.1) nanoparticles were prepared to enhance the electronic conductivity. Copper-doped Li4Ti5O12 nanoparticles were then embedded in continuous carbon nanofibers (CNFs), which gave rise to fast electron transfer along the fiber direction. After copper-doping and CNF embedding, the resultant copper-doped Li4Ti5O12/CNFs achieved excellent reversible capacity (158.1 mAh g(-1)) at 30 mA g(-1), high coulombic efficiency (99.87%), and good capacity retention (91%) after 150 cycles. In addition, copper-doped Li4Ti5O12/CNFs also exhibited good rate capability. It is, therefore, demonstrated that copper-doped Li4Ti5O12/CNFs are promising anode candidate. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据